The authoritative guide to ensuring science and technology make life on Earth better, not worse.

Advancing China’s nuclear security

By Hui Zhang | October 25, 2012

China, like all nuclear weapon states, bears a responsibility to provide leadership in nuclear security issues. But China’s strategy for securing its nuclear weapons — and the complex of facilities where fissile material for weapons is fabricated and stored — has so far remained largely opaque.

China, like all nuclear weapon states, bears a responsibility to provide leadership in nuclear security issues. But China's strategy for securing its nuclear weapons — and the complex of facilities where fissile material for weapons is fabricated and stored — has so far remained largely opaque.

What we do know about Chinese nuclear security is encouraging. As in all nations, however, room for improvement surely exists. At the 2012 nuclear security summit in Seoul, Chinese President Hu Jintao said, "In the future, China will [take further] nuclear security measures, make sure [of] the security of its own nuclear materials and facilities, [and] improve … overall nuclear security." But converting Hu's political commitment into practical, sustainable reality will require China to assess its nuclear sector's vulnerabilities along several dimensions, ranging from regulatory arrangements to physical infrastructure to the nation's security culture. Once vulnerabilities have been accurately assessed, the path will be clear to minimize China's nuclear security threats.

Basis going forward. In 2008, China's National Nuclear Safety Administration issued a new version of its guidelines for physical protection of nuclear facilities in the civilian sector. To account for design basis threats — the maximum threat that nuclear facility security systems must protect against — the new guidelines require plants to consider adversaries that could operate both outside and inside them. But the guidelines' standards for establishing a facility's design basis threat are not sufficiently clear and specific. As Li Ganjie, the director of the administration, has noted, the existing design basis threat at civilian facilities might be insufficient to repel attacks from larger and better-organized terrorist groups, or attacks involving powerful weapons.

China should review the assumptions upon which it designs physical protection for facilities where nuclear weapons, highly enriched uranium (HEU), and plutonium are housed, and the transportation systems through which these items move, in order to make sure that physical protection strategies reflect the threats that exist in the post-9/11 world. In particular, the design basis threat should incorporate the full spectrum of plausible adversaries and tactics. As argued by associate professor Matthew Bunn and his colleagues at Harvard University's Belfer Center, a minimum standard for the design basis threat should include protection against "a modest group of well-armed and well-trained outsiders; a well-placed insider; and both outsiders and an insider working together, using a broad range of possible tactics."

Further consolidation. China's military inventory of fissile material includes approximately 16 metric tons of weapons-grade HEU and 1.8 tons of weapons-grade plutonium. All of China's facilities for military production of HEU or plutonium have been closed or converted, or are being decommissioned.

Somewhat less than half of China's military stock of fissile material is probably contained in its estimated 170 nuclear warheads. China reportedly has a highly centralized system for storing and handling warheads, managed by an organization under the Second Artillery Corps called the 22 Base. The remainder of China's military stock of fissile material is likely to be located at a small number of sites. All in all, the country's consolidation of its fissile material appears to be good; but China should nonetheless assess every military and civilian location that houses HEU, separated plutonium, or nuclear weapons and consider further consolidating these locations.

China's use of civilian HEU is modest. The China Experimental Fast Reactor now uses uranium enriched to 64.4 percent but, according to recent private remarks made by Chinese experts, this facility will switch to mixed-oxide fuel in the next few years. China has only a few HEU-fueled research reactors, which it has been converting or shutting down. Nonetheless, China should speed the process of converting its own reactors and should also help to convert the miniature neutron source reactors it has exported. Further, Beijing should take a leading role in negotiating an international agreement for phasing out and ultimately banning the civilian use of HEU.

China should also rein in plans for commercial reprocessing. Plutonium recycling entails financial costs, problems with spent fuel management, proliferation concerns, and risks to health and the environment. Thus, it can be concluded that China has no convincing rationale for pursuing reprocessing in the foreseeable future, and should be in no rush to build commercial reprocessing plants.

Realistic testing. Until the late 1990s, the concept of performing vulnerability analyses of physical protection mechanisms did not receive much attention in China; in fact, no evaluation or theoretical analysis of physical protection systems was carried out. Today, however, Chinese facilities are required to conduct in-depth vulnerability assessments and performance tests to monitor each nuclear site's ability to protect itself against the threat for which it is designed. However, these assessments and tests do not include realistic, simulated attacks known as "force-on-force exercises." As the IAEA advocates in its most recent recommendations on the physical protection of nuclear materials and facilities, China, like other countries, should use these exercises to test the performance of its nuclear security systems' ability to defeat either insiders or outsiders.

Promoting culture. To ensure that modern systems for material protection, control, and accounting are implemented effectively, a strong security culture is imperative. One key element of an effective nuclear security culture is that relevant individuals hold a deeply rooted belief that nuclear security is important and that insider and outsider threats are credible. Many Chinese nuclear professionals, however, doubt that terrorism is a realistic threat in China.

Theft of fissile material by a corrupt insider at a Chinese facility cannot be ruled out, and terrorist attacks could also pose a threat to China's nuclear facilities. Indeed, militants in western China have committed acts of terrorism and have been associated with international terrorist groups. In any event, China should understand that a terrorist attack against a nuclear facility even in another country might doom China's ambitious plans for expansion of nuclear power. Thus, Beijing should lead by example in protecting its facilities against terrorism. China should conduct regular training programs at its nuclear facilities — not only to improve workers' professional skills, but also to impress upon staff that security and accounting for nuclear materials are matters of the highest national security priority.

Getting transparent. In the Nuclear Materials Security Index that the Nuclear Threat Initiative released in January of this year, China received poor overall marks, in large measure because of its lack of nuclear transparency. Since China's stocks of HEU and separated plutonium are mainly intended for use in weapons — and Beijing believes that secrecy enhances the deterrent effect of its small nuclear force — it is to be expected that secrecy will be maintained. This is likely to be the case until China embarks on a program of nuclear disarmament.

Still, to increase international confidence in security conditions around its nuclear materials and facilities, China should make substantial amounts of information public while nonetheless protecting sensitive information. China could, for example, release detailed accounts of nuclear security regulations, as well as general reports on implementation of and compliance with those regulations. Moreover, China should allow experts organized by the IAEA (such as the International Physical Protection Advisory Service) to conduct one or more reviews of the country's nuclear security arrangements.

Strengthening cooperation. Since the 9/11 attacks, China has greatly improved its material protection, control, and accounting system. This effort has benefited significantly from cooperation between the China Atomic Energy Authority and both the IAEA and the US Energy Department. So far, such cooperation has focused mainly on China's civilian nuclear sector, but it can be expected that the best practices that China has learned through this cooperative effort can be applied to the facilities and fissile materials in the military sector. This undertaking should be eased by the fact that China's atomic energy authority controls fissile materials nationwide — both the military and civilian stockpiles.

It is imperative that cooperation continue. For example, China's Atomic Energy Authority should collaborate with America's Energy Department on applying modern material protection, control, and accounting systems and best practices to China's pilot reprocessing plant and also to a pilot MOX facility that is under construction. Given that the risk of insider theft at bulk processing facilities such as these is relatively high, these facilities should be required to maintain highly effective security systems.

The US-China Lab-to-Lab Technical Exchange Program should be resumed; it had actually made progress in establishing the very approach that is needed today. China and the United States conducted this collaborative program from 1995 to 1998, partly in order to help create a "safeguards culture" in China by demonstrating the advantages of a material protection, control, and accounting system. However, the program ceased amid allegations of Chinese espionage at US nuclear weapons laboratories. Since 9/11, however, the United States and China have undertaken significant cooperation against terrorism, and this might provide an opportunity to restart the lab-to-lab program.

Though nuclear security arrangements in China appear to be generally good, the country must minimize any weaknesses that might be exploited by terrorists or corrupt insiders. Fissile materials carry risks too catastrophic to permit leaving anything to chance.


Together, we make the world safer.

The Bulletin elevates expert voices above the noise. But as an independent nonprofit organization, our operations depend on the support of readers like you. Help us continue to deliver quality journalism that holds leaders accountable. Your support of our work at any level is important. In return, we promise our coverage will be understandable, influential, vigilant, solution-oriented, and fair-minded. Together we can make a difference.

Get alerts about this thread
Notify of
guest

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
A painted Doomsday Clock surrounded by text snippets and illustrations from the Bulletin’s magazine archives appears beside text that reads, “Discuss the US elections, geopolitics, space, and more at the Bulletin’s annual gathering. On November 12, join 250 attendees and members of Bulletin leadership—including those who set the Doomsday Clock—at our annual gathering in Chicago.” Below it, a button that reads, “Get my ticket.”

RELATED POSTS

Receive Email
Updates